
1

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Camera Control by BO-IC400 at Android Application Development

The BT-35E has the camera for shooting the front of the wearer. BO-IC400 can get BT-35E camera data
(picture, video) by Android Camera API or Moverio SDK. In addition, the camera data can be applied to
various uses (e.g. marker recognition, etc).
This document is described how to control BT-35E camera by BO-IC400.
Note:This document is for OS version 1.1.0 of BO-IC400.

Please refer to following information for BT-35E camera control.

 The method of BT-35E camera control by BO-IC400

 The control possible items by Android API / Moverio SDK

 The specification of BT-35E camera control by Android CameraAPI of BO-IC400

The method of BT-35E camera control by BO-IC400
BO-IC400 can control BT-35E camera by using Android CameraAPI or Moverio SDK. Please refer to “The
Camera control page on MoverioBasicFunctionSDK_DevelopersGuide_EN_1.1.0.pdf” for the camera
control by Moverio SDK. However, the single application canʼt use Android CameraAPI and Movrerio SDK
at the same time.

There are CameraAPI1 and CameraAPI2 on Android CameraAPI. Please refer to following information for
the usages of each API.

 Android CameraAPI1(android.hardware.Camera)

https://developer.android.com/training/camera

*Note:CameraAPI1 is deprecated

 Android CameraAPI2(android.hardware.camera2)

https://developer.android.com/training/camera2

https://medium.com/google-developers/detecting-camera-features-with-camera2-

61675bb7d1bf#.2x3icoqnc

2

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

 The sample source code of Android Camera API2

The following information is sample code of camera application by CameraAPI2. Install to BO-IC400 and

launch the application with BT-35E connected, BT-35E camera can be used. Please refer to this for

implementing application.

https://github.com/googlearchive/android-

Camera2Basic?utm_campaign=adp_series_cameragithub_030916&utm_source=gdev&utm_medium=y

t-desc

The control possible items by Android API / Moverio SDK
It is possible to control the BT-35E camera by Android CameraAPI2 of BO-IC400. However, it is impossible
to change some settings from Android CameraAPI2. Please use Moverio SDK if want to change these
settings. The spec of BT-35E camera and controllability of the settings by each API / SDK are described
in ”The correspondence table of setting controllability by Android CameraAPI2 / Moverio SDK”.

The correspondence table of setting controllability by Android CameraAPI2 / Moverio SDK
Settings BT-35E Android CameraAPI Moverio SDK
Resolution

640x480 ● ●
1280x720 ● ●
1920x1080 ● ●
2592x1944 ● ●

Exposure compensation auto/manual auto only ●
The step of manual
exposure compensation

-5 ~ +5 ●

Focus control pan
Sharpness 0 ~ +128 ●
White balance

auto/cloudy_daylight(6000K)/dayli
ght(5500K)/fluorescent(4200K)/inc
andescent(3200K)/twilight(3500K)

auto only ●

Power frequency 50Hz/60Hz ●

3

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

The specification of BT-35E camera control by Android
CameraAPI of BO-IC400
The specification of some Android CameraAPI of BO-IC400 are different with standard Android

CameraAPI. This topic explains about this specification on CameraAPI2.

■About using BT-35E camera

The code snippet for getting camera characteristics

CameraManager manager =
 (CameraManager)getSystemService(CAMERA_SERVICE);

try {
 for (String cameraId : manager.getCameraIdList()) {
 CameraCharacteristics chars
 = manager.getCameraCharacteristics(cameraId);
 // Do something with the characteristics

} catch (CameraAccessException e) {
 e.printStackTrace();
}

“The code snippet for getting camera characteristics” is that specify the cameraId and get camera

characteristics. BO-IC400 has two USB port (Bottom port, Side port) and it is possible to control the BT-

35E camera and USB camera by connecting these. However, BT-35E is supported on Bottom port only.

When BT-35E is connected to Bottom port, the cameraId is assigned such as ”The cameraId at connecting

BT-35E”.

The cameraId at connecting BT-35E

Camera API BO-IC400 Back Camera Bottom port Side port *

CameraAPI1 1 0 2

CameraAPI2 /dev/video3 0 /dev/video4

* In case of connecting USB camera to Side port

BO-IC400 gets camera characteristics from CameraCharacteristics and can select intended camera.

4

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

The code snippet for getting camera lends direction

CameraCharacteristics chars
= manager.getCameraCharacteristics(cameraId);
Integer facing = chars.get(CameraCharacteristics.LENS_FACING);

“The code snippet for getting camera lens facing” is that get the lens facing from camera characteristics.

When BT-35E is connected to Bottom port, the lens facing is assigned such as ”The lens facing at

connecting BT-35E”.

The lens facing at connecting BT-35E

Camera API BO-IC400 Back Camera Bottom port Side port *

CameraAPI1 FRONT BACK FRONT

CameraAPI2 EXTERNAL BACK EXTERNAL

* In case of connecting USB camera to Side port

“The code snippet for using BT-35E camera” is that code snippet in case of using BT-35E camera.

The code snippet for using BT-35E camera

CameraManager manager =
 (CameraManager)getSystemService(CAMERA_SERVICE);

try {
 for (String cameraId : manager.getCameraIdList()) {
 CameraCharacteristics chars
 = manager.getCameraCharacteristics(cameraId);
 Integer facing = chars.get(CameraCharacteristics.LENS_FACING);
if (facing != null && facing ==

 CameraCharacteristics.LENS_FACING_BACK) {
 // Open BT-35E camera (Please refer to upper link)
}

} catch (CameraAccessException e) {
 e.printStackTrace();
}

5

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

■About using USB camera

When USB camera is connected to USB port (Bottom or Side), the cameraId is assigned such as ”The

cameraId at connecting USB camera”.

The cameraId at connecting USB camera

Camera API BO-IC400 Back Camera USB Bottom Port * USB Side Port *

CameraAPI1 0 1 or 2 1 or 2

CameraAPI2 0 /dev/video3 or 4 /dev/video3 or 4

* cameraId can be assigned a lower number Id from the first recognized device

The lens facing is assigned such as ”The lens facing at connecting USB camera”.

The lens facing at connecting USB camera

Camera API BO-IC400 Back Camera USB Bottom Port USB Side Port

CameraAPI1 BACK FRONT FRONT

CameraAPI2 BACK EXTERNAL EXTERNAL

If BO-IC400 use USB camera, please specify the parameters of ”The cameraId at connecting USB camera”

and ”The lens facing at connecting USB camera” to the source code of ”The code snippet for using BT-

35E camera”.

■About the screen rotation process

At Android CameraAPI2 sample source code, the screen rotation process depending on the BO-IC400

rotate state is executed in order to do appropriate camera preview.

However, when the same process is executed using BT-35E camera, the BO-IC400 rotate state and BT-

35E rotate state donʼt synchronize. As a result, the mismatch of camera preview is occurred. Therefore,

when BO-IC400 use BT-35E camera, recommend to not include the screen rotation process such as ”The

souce code of not including screen rotation process” (Comment out “matrix.postRoatate()”).

6

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

The souce code of not including screen roatation process

if (Surface.ROTATION_90 == rotation || Surface.ROTATION_270 ==
rotation) {
 bufferRect.offset(centerX - bufferRect.centerX(), centerY -
bufferRect.centerY());
 matrix.setRectToRect(viewRect, bufferRect, Matrix.ScaleToFit.FILL);
 float scale = Math.max(
 (float) viewHeight / mPreviewSize.getHeight(),
 (float) viewWidth / mPreviewSize.getWidth());
 matrix.postScale(scale, scale, centerX, centerY);
 // matrix.postRotate(90 * (rotation - 2), centerX, centerY);
}

In addition, the return values of AndroidAPI regarding screen rotation are fixed value on Trackpad mode

of BO-IC400 such as ”The AndroidAPI regarding screen rotation”.

The AndroidAPI regarding screen rotation

Android API Retuen value

Display#getRotation() ROTATION_0

Configuration#orientation ORIENTATION_LANDSCAPE

■About the aspect ratio of preview

The mounting angle differs between the camera mounted on BO-IC400 and the camera mounted on BT-

35E. Please refer to the table below for details.

The return value of CameraCharacteristics.get(CameraCharacteristics.SENSOR_ORIENTATION)

Type of Camera Return value

BO-IC400 Back Camera 90

BT-35E Camera 0

7

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Therefore, if use BT-35E camera and preview the image assuming 90-degree mounting angle, the preview

screen may be distorted. For example, a square object will appear as a rectangle. It is recommended that

pay attention to the mounting angle and preview the image appropriately for the resolution of the

acquired image.

The Android CameraAPI2 sample source code assumes a 90-degree mounting angle for previewing. With

the following modification such as “The code of changing appropriate aspect ratio”, the BT-35E camera

can preview with the proper aspect ratio.

The code of changing appropriate aspect ratio

if(mSensorOrientation != 0){
 // When the mounting angle is not 0-degree, it is BO-IC400 back
camera, so it should be the same as the original source code.
 if (orientation == Configuration.ORIENTATION_LANDSCAPE) {
 mTextureView.setAspectRatio(
 mPreviewSize.getWidth(),mPreviewSize.getHeight());
 } else {
 mTextureView.setAspectRatio(
 mPreviewSize.getHeight(), mPreviewSize.getWidth());
 }
} else {
 // When the mounting angle is 0-degree, it is determined to be
BT-35E camera (USB camera).
 //BT-35E camera doesn’t rotate regardless of the device state,
so the aspect ratio is always assumed to be horizontal preview.
 mTextureView.setAspectRatio(
 mPreviewSize.getWidth(), mPreviewSize.getHeight());
}

if(mSensorOrientation !=0) {
// For BT-35E camera, the following process is not necessary

because BT-35E camera doesn’t rotate regardless of the device state.
 if (Surface.ROTATION_90 == rotation || Surface.ROTATION_270 ==
rotation) {
 bufferRect.offset(centerX - bufferRect.centerX(), centerY -
bufferRect.centerY());
 matrix.setRectToRect(viewRect, bufferRect,
Matrix.ScaleToFit.FILL);
 float scale = Math.max(
 (float) viewHeight / mPreviewSize.getHeight(),
 (float) viewWidth / mPreviewSize.getWidth());
 matrix.postScale(scale, scale, centerX, centerY);
 matrix.postRotate(90 * (rotation - 2), centerX, centerY);
 } else if (Surface.ROTATION_180 == rotation) {
 matrix.postRotate(180, centerX, centerY);
 }
}

